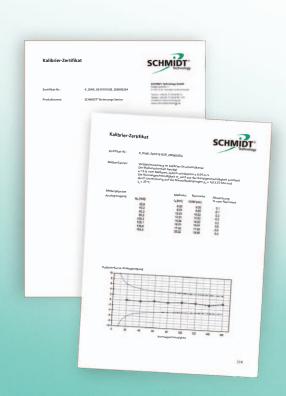

Einfach besser messen

Überwachen der Strömung in Reinräumen und reinen Bereichen


Eine richtungsdefinierte Luftführung in Reinräumen schützt Produkte vor Verunreinigungen und störende Partikel werden sicher abgeführt. Hierzu wird in Reinräumen mit hohen Reinheitsklassen eine gleichmäßige Luftströmung von der Decke zum Boden ("gerichtete, turbulenzarme Verdrängungsströmung") aufrecht erhalten. Der Überwachungsbereich reicht von 0,36 bis 0,54 m/s Strömungsgeschwindigkeit (EU GMP Leitfaden, Annex 1 in Klasse A). Diese Messung erfolgt reinraumseitig nach endständigen Filtern. Da in Stillstandsszeiten die Luftumwälzung gedrosselt wird, ist hochpräzises Messen der Luftgeschwindigkeit ab 0,1 m/s notwendig.

Die Lösung: Messen der Zuluftströmung mit SCHMIDT® Strömungssensoren SS 20.515 oder SS 20.415

Die Luftgeschwindigkeit wird laut Norm EN ISO 14644-3 in etwa 150 bis 300 mm Abstand unterhalb der Frontfläche des Filters gemessen. Zum einfachen Einbau in Decken- und Wandsysteme bieten die thermischen SCHMIDT® Strömungssensoren SS 20.415 und SS 20.515 ein reinraumtaugliches Schnell-Montagesystem. Beide Sensoren sind äußerst kompakt, da die komplette Elektronik im Fühlerrohr eingebaut ist und somit keine Turbulenzen in der turbulenzarmen Verdrängungsströmung erzeugt werden. Für den Einsatz in Zuluft-Systemen bietet der SS 20.415 eine Option zum gleichzeitigen Detektieren der Strömungsrichtung – interessant, wenn Rückströmungen auftreten.

Genauigkeit schwarz auf weiß

Als Besonderheit werden diese Sensoren in einem neuartigen "Vertikal-Strömungskanal" abgeglichen und kalibriert. Dies hat den Vorteil, dass alle Einflüsse aus der tatsächlichen Messpraxis vor Ort eliminiert werden und eine höchstmögliche Genauigkeit erreicht wird. Als Referenzmessverfahren wird das anerkannte Laser-Doppler-Messverfahren (LDA) verwendet. Auf Wunsch wird zusätzlich ein Hochpräzisonsabgleich geliefert. Dieser beinhaltet eine weitere Verbesserung der Genauigkeit durch vermehrte Abgleichpunkte und die Dokumentation der Soll- und Ist-Werte als ISO-Kalibrierprotokoll. Diese Kalibrierung kann nach Festlegung des Anwenders erneuert werden - typisch nach einem Jahr.

5 mechanische Befestigungsvarianten

360°

Ausgangssignal

4 ... 20 mA/0 ... 10 V

mit Schutzüberzug

SS 20.515

Die extrem großen Anströmwinkel von 360° radial und 90° vertikal vereinfachen die Positionierung im Gasstrom.

Strömungssensor

Präzises Messen kleiner Luftgeschwindigkeiten

Die beiden SCHMIDT® Strömungssensoren SS 20.415 und SS 20.515 arbeiten beide nach dem thermischen Messprinzip. Der mechanische Aufbau des Sensorelementes ist jedoch unterschiedlich.

SCHMIDT® Strömungssensor SS 20.415 Das "Thermopile"-Messprinzip

Der thermische Strömungssensor SS 20.415 basiert und arbeitet auf einem Thermopile (Thermosäule)- Sensor. Mit seinem beheiztem Halbleiterelement erkennt er die vorbeiströmende kühlende Luft.

Über dem "Heizer" wird eine Wärmeglocke erzeugt, die dann von der Strömung bewegt wird. Links und rechts vom Heizer messen zwei Temperaturfühler die Mediumstemperatur. Aus den sich ergebenen Messunterschieden wird dann die Normgeschwindigkeit ermittelt. Aus der Detektion des wärmeren Bereichs erkennt der Sensor die Strömungsrichtung (optional).

SCHMIDT® Strömungssensor SS 20.515 Das "Hantelkopf"-Messprinzip

Messkammer

Der Strömungssensor, in der Edelstahlhülse zwischen den beiden "Hantelscheiben", wird auf 40 K über die Mediumstemperatur aufgeheizt. Diese wird mit dem separaten Temperatursensor gemessen. Die benötigte Leistung zur Aufrechterhaltung der Übertemperatur ist ein Maß für die Strömungsgeschwindigkeit die als "Normalgeschwindigkeit" ausgegeben wird. Eine zusätzliche Messung von Druck oder der Temperatur des Mediums ist somit nicht erforderlich. Die beiden Hantelscheiben haben die Funktion von Strömungsgleichrichtern – somit können auch relativ ungleichförmige Strömungen gemessen werden.

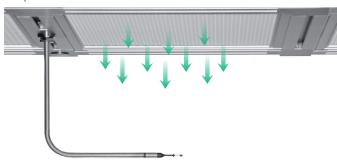
Immer die richtige Wahl

Beide Sensoren – sowohl der SS 20.415 als auch der SS 20.515 – bieten ein reinraumtaugliches und GMP-gerechtes Design und die reinraumtauglichen Montagemöglichkeiten sowie den Steckanschluss, der einen schnellen Wechsel vor Ort ermöglicht. Je nach Anwendung bieten beide Sensoren weitere Vorteile:

- · Desinfizierbar mit Alkoholen und H₂O₂ (VHP geeignet)
- · Erfassung von kleinsten Luftströmungen ab 0,05 bzw. 0,06 m/s
- · Selbstüberwachung und Ausgabe von Fehlersignalen
- · Sonderlängen bis 1.000 mm (gerade Version)

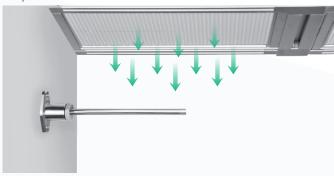
Die Unterschiede auf einen Blick

	SS 20.415	SS 20.515
Sensorausführung	Thermopile	Hantelkopf
Temperaturmessung	-	ja
Richtungserkennung	ja, bidirektional (optional)	-
Turbulenzgrad- bestimmung	ja (Programmier-Kit)	-
Anströmwinkel	±5°	360°/±45°
Schaltausgänge	2 x Open Collector	-
Einsetzbar bei:		
Aggressiven Medien	nein	+ ++ (mit Schutzüberzug)
Alkohole	+	+ ++ (mit Schutzüberzug)
H ₂ O ₂	++	++ (ohne Schutzüberzug)
Ansprechzeit (t ₉₀)	ab 0,01 s	ca. 3 s
Mechanische Belastbarkeit	++	+*
Reinigung im einge- schalteten Zustand	nein	++
Kundenspezifische Programmierung	ja (optional)	-
Konfigurierung vor Ort	ja (Programmier-Kit)	-


Legende

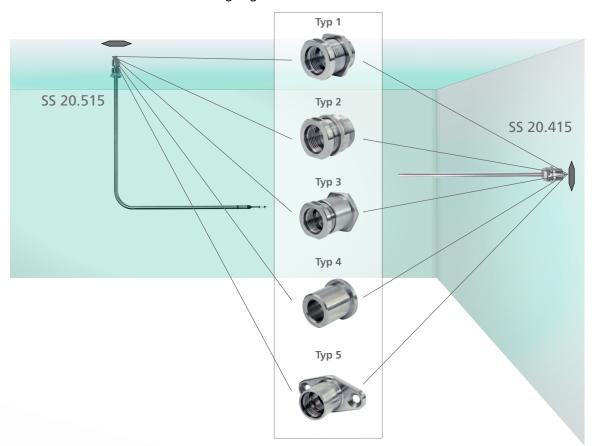
* mit Schutzbügel

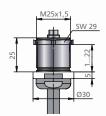
-	nicht möglich
+	gut geeignet
++	hervorragend geeignet


Beide Sensortypen gibt es sowohl als 90°- abgewinkelte Bauform für Decken als auch in gerader Bauform zum Einbau in Wände

Beispiel 1

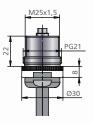
SS 20.515 (gewinkelt; 270 mm x 300 mm), Deckenmontage unter einer Laminarflow-Einheit (mit Befestigung Typ 1)


Beispiel 2


SS 20.415 (gerade; \geq 300 mm), Wandmontage (mit Befestigung Typ 5)

Auswahl der mechanischen Befestigungsvarianten

Typ 1

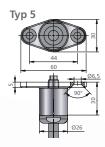


Wird in Decken, Wände oder Rahmen mit einer Dicke von 1 ... 22 mm eingebaut. Um eine Kontermutter oder ein Gewinde in die Decke anzubringen, ist eine Öffnung von Ø 26 mm erforderlich.

Lieferumfang

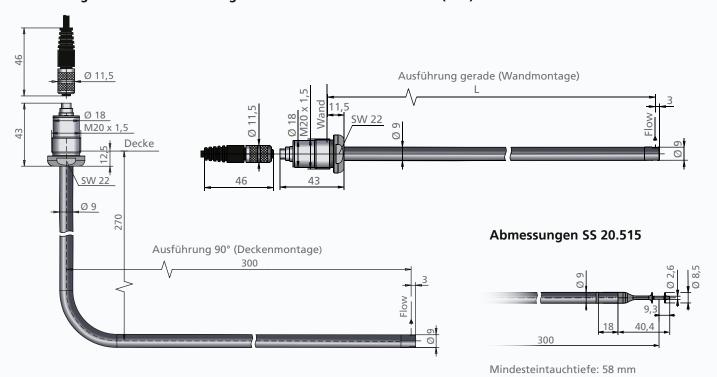
- Gewindebuchse M25 (Edelstahl 1.4571)
- Kontermutter

Typ 2

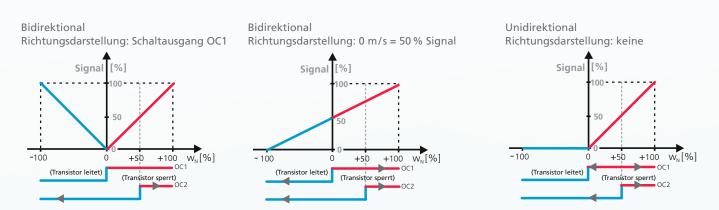

Wird in eine vorhandene Öffnung mit PG21-Gewinde (z.B. Sprinkleröffnungen in Profilen) im Rahmen eingebaut.

Wird in einen Rahmen mit einer Dicke von 21 ... 40 mm eingebaut, speziell für Hohlkammer-Deckenprofile. Öffnungen mit Ø 26 mm und Ø 28,5 mm sind erforderlich.

Wird in Decken oder Wänden aus Edelstahl eingeschweißt – für druckdichten Einbau.



Wird unter der Decke oder an der Wand mit zwei Schrauben M6 befestigt. Öffnung in Decke/Wand mit Ø 15 mm für Kabel erforderlich plus zwei Gewinde M6.


- e M25 Gewindebuchse M25 (Edelstahl 1.4571)
 - Gewindeadapter M25 x 1,5 auf PG21
- Gewindebuchse M25 (Edelstahl 1.4571)
- Schaftmutter
- Einschweißbuchse (Edelstahl 1.4571)
- Flanschbuchse (Edelstahl 1.4571)

Abmessungen SCHMIDT® Strömungssensor SS 20.415 und SS 20.515 (mm)

Darstellung Analog- und Digitalsignal SS 20.415

Anmerkung: Bei unidirektionaler Auslegung dient der Schaltausgang OC1 per "default" (konfigurierbar) als Strömungsindikator. Er zeigt eine Strömung größer 0 m/s eindeutig durch Sperren an und schaltet durch, wenn sie kleiner oder gleich 0 m/s beträgt. Pfeile in der Darstellung der Schaltausgänge bedeuten, dass der Schwellwert konfigurierbar ist. Die Werkseinstellung beim Schaltausgang OC2 ist 50 % vom Messbereich (Option: kundenspezifischer Schaltpunkt).

Technische Daten

Daten	SS 20.415	SS 20.515			
Messgröße w _N	Normalgeschwindigkeit w _N bezogen auf Normalbed	ingungen von $T_N = 20$ °C und $p_N = 1.013,25$ hPa			
Messmedium	Saubere Luft / Stickstoff / we	itere Gase auf Anfrage			
Messbereiche Strömung w _N	0 1/2,5/1	0 m/s			
Max. Anzeigebereich w _N	+ 10 % über Me	essbereich			
Untere Nachweisgrenze w _N	0,05 m/s	0,06 m/s			
Messbereich Temperatur T _M		-20 +70 °C			
Messgenauigkeit					
Standard w _N	±(3 % v. Mw. + (0,05 m/s) 1)			
Hochpräzision (optional) w _N	±(1 % v. Mw. + (0,04 m/s) ¹⁾			
Reproduzierbarkeit w _N	±1,5 % v.	Mw.			
Ansprechzeit t ₉₀ W _N	0,01 10 s (konfigurierbar), 1 s Werkseinst.	3 s (Sprung von 0 auf 5 m/s)			
Temperaturgradient w _N	< 2 K/min be	i 5 m/s			
Messgenauigkeit T_M ($w_N > 2$ m/s)		±1K (10 30°C) ±2 K restlicher Messbereich			
Betriebstemperatur					
Betriebstemperatur	0 +60°C	-20 +70 °C			
Lagertemperatur	-20 +85°C	-30 +85 °C			
Material					
Sensorkopf	Edelstahl 1.4571	PBT glasfaserverstärkt, Edelstahl 1.4571, Schutzüberzug (optional)			
Fühlerrohr	Edelstahl 1	4571			
Steckverbinder	Edelstahl 1	.4571			
Allgemeine Daten					
Medium, Umgebung	Nicht kondensieren	d (bis 95 % rF)			
Betriebsdruck	Atmosphärisch (700	1.300 hPa)			
Versorgungsspannung	typ. 24 V DC (12 26,4 V DC)	24 V DC ± 10 %			
Stromaufnahme	typ. 30 mA/max. 150 mA	typ. 80 mA/max. 120 mA			
Analogausgang	0 10 V ($R_L \ge 10 \text{ k}\Omega$) oder 4 20 mA/max. 21	I,6 mA (R _L ≤ 300 Ω); kurzschlussgeschützt			
Schaltausgänge	2 Stück Open-Collector, strombegrenzt und kurz- schlussfest (≤ 26,4 V DC/55 mA), konfigurierbar Kanal 1 (OC1): Richtung oder Schwellwert Kanal 2 (OC2): Schwellwert Schalthysterese 5 % v. Schwellwert, min. ±0,05 m/s	-			
Fehlersignal	Nur bei 4 20 mA-Ausgang: 2 mA (i	n Anlehnung an NAMUR NE43)			
Anschluss	Steckverbindung M9 verscl	hraubt, 7-polig, male			
Maximale Leitungslänge	Spannungssignal: 15 m,	Stromsignal: 100 m			
Einbaulage	In Fallströmungsrichtung				
Schutzart / Schutzklasse	IP 65/III (SELV) oder PELV				
Fühlerlänge	270 x 300 mm (abgewinkelt), 300 mm oder k	undenspezifisch bis 1.000 mm (gerade)			
Gewicht	ca. 200 g (abgewink	elte Bauform)			

¹⁾ unter Referenzbedingungen

Zubehör

Programmier-Kit (nur für SS 20.415) Art.-Nr. 505 960

Das Programmier-Kit – kombiniert mit einem PC (via RS 232 und mit Adapter USB-Kabel) – erlaubt die Konfigurierung direkt vor Ort. Darüber hinaus kann die Mediumstemperatur sowie der Turbulenzgrad der Strömung angezeigt 1) werden. Der Turbulenzgrad ist eine Abweichung vom Mittelwert.

Das Programmier-Kit besteht aus:

- Programmierungs-Interface mit LED-Anzeige der Ausgangssignale und der Spannungsversorgung für den Sensor
- PC-Software (für Windows 2000, XP, VISTA und Win 7)
- Anschlusskabel für Sensor (Länge 2 m)
- RS 232-Kabel

Konfigurationsmöglichkeiten mittels Programmier-Kit (alternativ: Werksseitige kundenspezifische Programmierung für jeden Sensor s. Bestelldaten):

Parameter	Werkseinstellung	Einstellbereich	Anmerkung
Ansprechzeit	1 s	0,01 10 s	
Schaltausgang 1 (OC1)	0 m/s	(-100) 0 +100 %	Fest auf 0 m/s bei bidirektionaler Ausführung mit Richtungsdarstel- lung über Schaltausgang 1 (OC1)
Schaltausgang 2 (OC2)	50 % vom Messbereich	(-100) 0 +100 %	
Schaltpolarität OC1/OC2	Siehe Grafiken "Analog- und Digitalsignale"	Polarität umkehrbar	

¹⁾ Die Messwertübertragung bzw. -auswertung über das Programmier-Kit ist nur für Konfigurations- und Testzwecke (nicht für kontinuierlichen Betrieb) geeignet.

Geschirmte Anschlusskabel in verschiedenen Längen erhältlich.

Kupplungsdose Art.-Nr. 507 150

Zur Verwendung und Anschluss an bereits vorhandene Kabel (geschirmt; Ø 0,14 mm)

LED-Messwertanzeige (siehe seperate Broschüre)

Zur Visualisierung direkt vor Ort ist eine LED-Messwertanzeige erhältlich. Die Vorteile:

- Anzeige in m/s oder m³/h
- Programmierbares Ausgangssignal
- Zwei programmierbare Relaisausgänge
- Versorgung: 85 250 V AC oder 24 V DC
- Spannungsversorgung des angeschlossenen Sensors
- Separate Version mit Summenfunktion und 2. Messeingang

Schutzbügel Art.-Nr. 531 026

Zum Schutz des Hantelkopfes vor großen mechanischen Einflüssen kann auf das Sensorrohr ein Schutzbügel aus Edelstahl aufgesteckt werden. Dieser ist besonders empfehlenswert z.B. in "reinen Werkbänken", um ein unbeabsichtigtes Berühren beim Hantieren zu vermeiden. Der Schutzbügel ist so ausgeführt, dass eine aerodynamische Beeinflussung ausgeschlossen ist.

Abmessungen (B x H x L) : 53 x 11 x 99 mm

Bestellinformation SCHMIDT® Strömungssensor SS 20.415 und SS 20.515

	Beschreibung	Artikel-Nummer									
Basissensor	SCHMIDT® Strömungssensor SS 20.415 Thermopilekopf-Ausführung	531 953 -	А	1	С	D	Е	F	G	Н	I
	SCHMIDT® Strömungssensor SS 20.515 Hantelkopf-Ausführung	524 515 -	А	В	С	D	1	1	G	Н	1
	Optionen										
Mechanische	Fühlerlänge 270 mm x 300 mm		1								
Ausführung	Fühlerlänge 300 mm (gerade)		2								
	Sonderlängen (nur gerade: 300 bis 1.000 mm) Länge:mm		9								
Schutz-	Ohne Schutzüberzug			1							
ausführung	Mit Schutzüberzug (nur SS 20.515)			2							
Mechanische	Gewindebuchse M25 mit Kontermutter				1						
Befestigung	Gewindebuchse M25 mit Gewindeadapter M25 x 1,5 auf PG21				2						
	Gewindebuchse M25 mit Schaftmutter				3						
	Einschweißbuchse				4						
	Flanschbuchse				5						
	Ohne Befestigungsmaterial				6						
Messbereich	Messbereich 0 1 m/s					1					
	Messbereich 0 2,5 m/s					2					
	Messbereich 0 10 m/s					3					
Messrichtung	Unidirektional						1				
	Bidirektional (nur SS 20.415)						2				
Richtungsdar-	Unidirektional							1			
stellung	Schaltausgang OC 1 = Richtungssignal (nur SS 20.415, bidirektional)							2			
	Richtungsdarstellung mit halbiertem Analogsignal: 0 m/s = 12 mA / 5V (nur SS 20.415, bidirektional)							3			
Ausgangssignale	0 10 V								1		
	4 20 mA								2		
Abgleich und	Standardabgleich									1	
Kalibrierung	Hochpräzisionsabgleich inkl. ISO-Kalibrierzertifikat									2	
	Hochpräzisionsabgleich inkl. ISO-Kalibrierzertifikat bidirektional (nur SS 20.415)									3	
Sensor-	Werkseinstellung										1
Programmierung	Kundenspezifische Programmierung (nur SS 20.415): Schaltpolarität, Schwellwert, Richtungssignal und Ansprechzeit										2

Bestellinformation SCHMIDT® Strömungssensor SS 20.415 und SS 20.515

	Beschreibung	Artikel-Nummer
Zubehör	Kupplungsdose, 7-polig, mit Lötanschlüssen, für Kabel Ø 0,14 mm²	535 278
	Anschlusskabel mit Kupplungsdose, 2 m Länge, offene Kabelenden, Material PUR	505 911-1
	Anschlusskabel mit Kupplungsdose, 5 m Länge, offene Kabelenden, Material PUR	505 911-2
	Anschlusskabel mit Kupplungsdose, Länge frei wählbar, offene Kabelenden, Material PUR	505 911-4
	Anschlusskabel mit Winkeldose, 7-polig, 10 m Länge, offene Kabelenden, Material PUR	508 140
	Programmier-Kit (nur für SS 20.415)	505 960
	Aufsteckbarer Schutzbügel für Hantelkopf, Edelstahl (nur für SS 20.515)	531 026
	Netzteil: Ausgang 24 V DC / 1A, Versorgung 115 / 230 V AC	535 282
und Sti SCHMI SCHMI	SCHMIDT® LED-Anzeige MD 10.010; im Wandgehäuse zur Visualisierung von Volumenstrom und Strömungsgeschwindigkeit, 85 250 V AC und Sensor-speisung	527 320
	SCHMIDT® LED-Anzeige MD 10.010; wie 527 320, jedoch mit 24 V DC Spannungsversorgung	528 240
	SCHMIDT® LED-Anzeige MD 10.015; im Wandgehäuse, wie 527 320, jedoch mit zusätzlicher Summenfunktion und 2. Messeingang	527 330
	SCHMIDT® LED-Anzeige MD 10.015; wie 527 330, jedoch mit 24 V DC Spannungsversorgung	528 250
	Montagesatz für Rohranbau passend für MD 10.010/10.015, mit Schlauchschellen und Band zum Anpassen an den Rohr-Durchmesser	531 394

