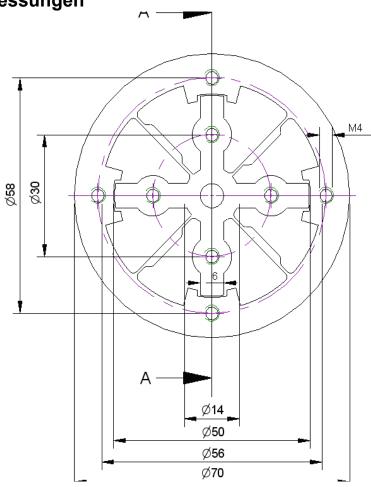
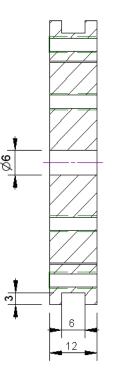
Der Drehmomentsensor besteht aus einem Außenflansch und einem Innenflansch, die über 4 s-Form Biegefedern miteinander verbunden sind. Außen- und Innenflansch haben jeweils 4 Gewinde M4 zur Einleitung des Drehmomentes.


Der Sensor eignet sich zur Messung des Reaktionsmomentes z.B. in der Uhrenindustrie, in der Aerodynamik z.B. in Windkanalwaagen sowie zur Messung von Reibkräften. Durch den integrierten Anschlag ist der Sensor robust gegen Überlast.



Achtung: Der Spalt zwischen Innen- und Außenring darf nicht blockiert werden.

Abmessungen

Section A-A

Technische Daten

Maße / Material		
Bauform		Reaktionsmoment-sensor
Material		
TD70 150mNm 50mNm		Aluminium
TD70 1Nm		Edelstahl 1.4542
Durchmesser × Höhe	mm x mm	Ø 70 × 10mm
Teilkreis- Innenflansch / Außenflansch	mm	Ø 58 / Ø 30
mechanische Daten		
Nennmomente (FS)	mNm	25, 50, 150, 300, 1000
Gebrauchsmoment	%FS	150
Bruchmoment	%FS	400
Grenz-Axialkraft	N	500
Verdrehwinkel bei Nennmoment (FS)	°/FS	0,7 (0,4)
elektrische Daten		
Nennkennwert 1)	mV/V @ FS	ca. 0,7
Nullsignal	mV/V	< 0,05
max. Speisespannung	V	10
Eingangswiderstand	Ohm	700 ±10
Ausgangswiderstand	Ohm	700 ±10
Isolationswiderstand	Ohm	> 5x10 ⁹
Anschluss 4 Leiter, STC-31V-4	m	2
Genauigkeit		
Genauigkeitsklasse	%	0,1 (0,2)
rel. Linearitätsabweichung	%FS	<0,1 (0,2)
rel. Umkehrspanne	%FS	<0,1 (0,2)
Temperatureinfluss auf das Nullsignal	%FS/K	<0,01 (0,02)
Temperatureinfluss auf den Kennwert	%RD/K	<0,01 (0,02)
rel. Kriechen (30 min)	%FS	≤ 0,05 (0,1)
Temperatur		
Nenntemperaturbereich	°C	-10+60
Gebrauchstemperaturbereich	°C	-10+85
Lagertemperaturbereich	°C	-10+85

Abkürzungen: RD: Istwert ("Reading"); FS: Endwert ("Full Scale");

¹⁾ Der exakte Nennkennwert wird im Prüfprotokoll ausgewiesen.

²⁾ Werte in () für ±25 mNm

Anschlussbelegung

	Bezeichnung	
+Us	positive Brückenspeisung	rot
-Us	negative Brückenspeisung	schwarz
+Ud	positives Sensorsignal	grün
-Ud	negatives Sensorsignal	weiß
Schirm		transparent